Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
SemideFinite编程(SDP)是一个统一的框架,可以概括线性编程和四二次二次编程,同时在理论和实践中也产生有效的求解器。但是,当覆盖SDP的约束以在线方式到达时,存在近似最佳解决方案的已知结果。在本文中,我们研究了在线涵盖线性和半决赛程序,其中通过可能错误的预测指标的建议增强了算法。我们表明,如果预测变量是准确的,我们可以有效地绕过这些不可能的结果,并在最佳解决方案(即一致性)上实现恒定因素近似值。另一方面,如果预测变量不准确,在某些技术条件下,我们取得的结果既匹配经典的最佳上限和紧密的下限,则达到恒定因素,即稳健性。更广泛地,我们引入了一个框架,该框架既扩展了(1)由Bamas,Maggiori和Svensson(Neurips 2020)研究的机器学习预测变量增加的在线套装问题,以及(2)在线覆盖SDP问题,由SDP问题发起。 Elad,Kale和Naor(ICALP 2016)。具体而言,我们获得了一般的在线学习算法,用于涵盖具有分数建议和约束的线性程序,并启动学习启发算法以涵盖SDP问题的研究。我们的技术基于Buchbinder和NAOR的原始二次框架(操作研究的数学,34,2009),并且可以进一步调整以处理变量位于有限区域的约束,即框约束。
translated by 谷歌翻译
我们探索稀疏优化问题的算法和局限性,例如稀疏线性回归和稳健的线性回归。稀疏线性回归问题的目的是确定少数关键特征,而强大的线性回归问题的目标是确定少量错误的测量值。具体而言,稀疏线性回归问题寻求$ k $ -sparse vector $ x \ in \ mathbb {r}^d $以最小化$ \ | ax-b \ | _2 $,给定输入矩阵$ a \ in \ mathbb in \ mathbb {r}^{n \ times d} $和一个目标向量$ b \ in \ mathbb {r}^n $,而强大的线性回归问题寻求一个$ s $ s $,最多可以忽略$ k $行和a向量$ x $最小化$ \ |(ax-b)_s \ | _2 $。我们首先显示了在[OWZ15]工作上稳健回归构建的近似近似值的双晶格,这意味着稀疏回归的结果相似。我们通过减少$ k $ clique的猜想,进一步显示出稳健回归的精细颗粒硬度。在正面,我们给出了一种鲁棒回归的算法,该算法可实现任意准确的添加误差,并使用运行时与从细粒硬度结果中的下界紧密匹配的运行时,以及与类似运行时稀疏回归的算法。我们的上限和下限都依赖于从鲁棒线性回归到我们引入的稀疏回归的一般减少。我们的算法受到3SUM问题的启发,使用大约最近的邻居数据结构,并且可能具有独立的兴趣来解决稀疏优化问题。例如,我们证明我们的技术也可以用于研究稀疏的PCA问题。
translated by 谷歌翻译
Many business workflows require extracting important fields from form-like documents (e.g. bank statements, bills of lading, purchase orders, etc.). Recent techniques for automating this task work well only when trained with large datasets. In this work we propose a novel data augmentation technique to improve performance when training data is scarce, e.g. 10-250 documents. Our technique, which we call FieldSwap, works by swapping out the key phrases of a source field with the key phrases of a target field to generate new synthetic examples of the target field for use in training. We demonstrate that this approach can yield 1-7 F1 point improvements in extraction performance.
translated by 谷歌翻译
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
translated by 谷歌翻译
The tropical cyclone formation process is one of the most complex natural phenomena which is governed by various atmospheric, oceanographic, and geographic factors that varies with time and space. Despite several years of research, accurately predicting tropical cyclone formation remains a challenging task. While the existing numerical models have inherent limitations, the machine learning models fail to capture the spatial and temporal dimensions of the causal factors behind TC formation. In this study, a deep learning model has been proposed that can forecast the formation of a tropical cyclone with a lead time of up to 60 hours with high accuracy. The model uses the high-resolution reanalysis data ERA5 (ECMWF reanalysis 5th generation), and best track data IBTrACS (International Best Track Archive for Climate Stewardship) to forecast tropical cyclone formation in six ocean basins of the world. For 60 hours lead time the models achieve an accuracy in the range of 86.9% - 92.9% across the six ocean basins. The model takes about 5-15 minutes of training time depending on the ocean basin, and the amount of data used and can predict within seconds, thereby making it suitable for real-life usage.
translated by 谷歌翻译
Measuring growth rates of apple fruitlets is important because it allows apple growers to determine when to apply chemical thinners to their crops to optimize yield. The current practice of obtaining growth rates involves using calipers to record sizes of fruitlets across multiple days. Due to the number of fruitlets needed to be sized, this method is laborious, time-consuming, and prone to human error. In this paper, we present a computer vision approach to measure the sizes and growth rates of apple fruitlets. With images collected by a hand-held stereo camera, our system detects, segments, and fits ellipses to fruitlets to measure their diameters. To measure growth rates, we utilize an Attentional Graph Neural Network to associate fruitlets across different days. We provide quantitative results on data collected in an apple orchard, and demonstrate that our system is able to predict abscise rates within 3% of the current method with a 7 times improvement in speed, while requiring significantly less manual effort. Moreover, we provide results on images captured by a robotic system in the field, and discuss the next steps to make the process fully autonomous.
translated by 谷歌翻译
We have developed a model for online continual or lifelong reinforcement learning (RL) inspired on the insect brain. Our model leverages the offline training of a feature extraction and a common general policy layer to enable the convergence of RL algorithms in online settings. Sharing a common policy layer across tasks leads to positive backward transfer, where the agent continuously improved in older tasks sharing the same underlying general policy. Biologically inspired restrictions to the agent's network are key for the convergence of RL algorithms. This provides a pathway towards efficient online RL in resource-constrained scenarios.
translated by 谷歌翻译
A paper of Alsinglawi et al was recently accepted and published in Scientific Reports. In this paper, the authors aim to predict length of stay (LOS), discretized into either long (> 7 days) or short stays (< 7 days), of lung cancer patients in an ICU department using various machine learning techniques. The authors claim to achieve perfect results with an Area Under the Receiver Operating Characteristic curve (AUROC) of 100% with a Random Forest (RF) classifier with ADASYN class balancing over sampling technique, which if accurate could have significant implications for hospital management. However, we have identified several methodological flaws within the manuscript which cause the results to be overly optimistic and would have serious consequences if used in a clinical practice. Moreover, the reporting of the methodology is unclear and many important details are missing from the manuscript, which makes reproduction extremely difficult. We highlight the effect these oversights have had on the result and provide a more believable result of 88.91% AUROC when these oversights are corrected.
translated by 谷歌翻译